/* ************************************************************************** */ /* */ /* ::: :::::::: */ /* map.hpp :+: :+: :+: */ /* +:+ +:+ +:+ */ /* By: apommier +#+ +:+ +#+ */ /* +#+#+#+#+#+ +#+ */ /* Created: 2022/11/26 15:23:32 by apommier #+# #+# */ /* Updated: 2022/11/26 17:36:15 by apommier ### ########.fr */ /* */ /* ************************************************************************** */ #pragma once #include "./iterators/bidirectionnal_iterator.hpp" #include "./iterators/pair.hpp" #include "./iterators/make_pair.hpp" #include "vector.hpp" #define RED 1 #define BLACK 0 #define _end 0 //typedef typename Alloc::template rebind >::other namespace ft { template< class Key, class T, class Compare = std::less, class Allocator = std::allocator > > class map { public : //----------------------------- //---------MEMBER TYPE--------- //----------------------------- struct node; typedef Key key_type; typedef T mapped_type; typedef ft::pair value_type; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef Compare key_compare; typedef Allocator allocator_type; typedef typename Allocator::template rebind::other node_allocator_type; typedef value_type& reference; typedef const value_type& const_reference; typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef ft::bidirectionnal_iterator iterator; typedef ft::bidirectionnal_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; class value_compare; protected : key_compare _comp; allocator_type _alloc; node_allocator_type _node_alloc; node *_root; size_type _size; public : struct node{ value_type data; node *parent; node *right; node *left; bool color; node(key_type const &key, mapped_type const &val) : data(ft::make_pair(key, val)), parent(0), right(_end), left(_end), color(0) {} }; //----------------------------- //-----PRIVATE MEMBER TYPE----- //----------------------------- public : //--------------------------------------- //---------COPLIEN FORM FUNCTION--------- //--------------------------------------- explicit map( const Compare& comp = Compare(), const Allocator& alloc = Allocator() ) : _comp(comp), _alloc(alloc), _root(_end) { _size = 0; } template< class InputIt > map( InputIt first, InputIt last, const Compare& comp = Compare(), const Allocator& alloc = Allocator() ) : _comp(comp), _alloc(alloc), _root(_end) { _size = 0; this->insert(first, last); } map( const map& x) { *this = x; } ~map() { } map& operator=(const map& x) { _comp = x._comp; _alloc = x._alloc; _node_alloc = x._node_alloc; _root = x._root; _size = x._size; return (*this); } //---------------------------------- //---------MEMBER FUNCTION---------- //---------------------------------- //------------------------- //--------Iterators-------- //------------------------- iterator begin() { return iterator(_root, _root); } const_iterator begin() const { return const_iterator(_root, _root); } iterator end() { return iterator(_root, _end); } const_iterator end() const { return const_iterator(_root, _end); } reverse_iterator rbegin() { return reverse_iterator(this->end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(this->end()); } reverse_iterator rend() { return reverse_iterator(this->begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(this->begin()); } //------------------------ //--------Capacity-------- //------------------------ bool empty() const { if (!_size) return (1); return(0); } size_type size() const { return (_size); } size_type max_size() const { return (_alloc.max_size()); } //------------------------------ //--------Element access-------- //------------------------------ mapped_type& operator[] (const key_type& k) { iterator tmp = this->find(k); //ft::pair<> new_pair = ft::make_pair(k, mapped_type()); value_type new_pair = ft::make_pair(k, mapped_type()); if (tmp.base() == _end) return this->insert_node(new_pair.first, new_pair.second)->data.second; //?????? else return ((*tmp).second); } mapped_type& at (const key_type& k) { iterator tmp = this->find(k); if (tmp->m == _end) throw (std::out_of_range("ft::map::at")); else return (*tmp.pair.second); } const mapped_type& at (const key_type& k) const { iterator tmp = this->find(k); if (tmp->m == _end) throw (std::out_of_range("ft::map::at")); else return (*tmp.pair.second); } //------------------------- //--------Modifiers-------- //------------------------- ft::pair insert (const value_type& val) { node *pt = new_node(val.first, val.second); _root = insert_node(_root, pt); fixViolation(_root, pt); } iterator insert (iterator position, const value_type& val) { (void)position; node *pt = new_node(val.first, val.second); _root = insert_node(_root, pt); fixViolation(_root, pt); } template void insert (InputIterator first, InputIterator last) { while (first != last) { node *pt = new_node((*first).first, (*first).second); _root = insert_node(_root, pt); fixViolation(_root, pt); first++; } } void erase (iterator position) { delete_node(position.base()); } size_type erase (const key_type& k) { delete_node(find(k).base()); return(1); } void erase (iterator first, iterator last) { while (first != last) { delete_node(first.base()); first++; } } void swap (map& x) { map tmp; tmp->_comp = _comp; tmp->_alloc = _alloc; tmp->_node_alloc = _node_alloc; tmp->_root = _root; tmp->_size = _size; _comp = x->_comp; _alloc = x->_alloc; _node_alloc = x->_node_alloc; _root = x->_root; _size = x->_size; x->_comp = tmp-> _comp; x->_alloc = tmp->_alloc; x->_node_alloc = tmp->_node_alloc; x->_root = tmp->_root; //x->_end = tmp->_end; x->_size = tmp->_size; } void clear() { } //------------------------- //--------Observers-------- //------------------------- key_compare key_comp() const { return (_comp); } value_compare value_comp() const { return (value_compare(_comp)); } //------------------------- //-------Operations-------- //------------------------- iterator find (const key_type& k) { node *x = _root; int i = 0; while (x != _end && x->data.first != k) { std::cout << "i === " << i << std::endl; if (k > x->data.first) x = x->left; else x = x->right; i++; } return (iterator(_root, _end, x)); } const_iterator find (const key_type& k) const { node *x = _root; while (x != _end && x->data.first != k) { if (k > x->data.first) x = x->left; else x = x->right; } return (iterator(_root, _end, x)); } size_type count (const key_type& k) const { if (find(k)->m == _end) return (0); return (1); } iterator lower_bound (const key_type& k) { iterator it = begin(), ite = end(); while (it != ite && !(_comp((*it).first, k))) it++; return (it); } const_iterator lower_bound (const key_type& k) const { const_iterator it = begin(), ite = end(); while (it != ite && !(_comp((*it).first, k))) it++; return (it); } iterator upper_bound (const key_type& k) { iterator it = begin(), ite = end(); while (it != ite && !(_comp((*it).first, k))) it++; return (it); } const_iterator upper_bound (const key_type& k) const { const_iterator it = begin(), ite = end(); while (it != ite && _comp((*it).first, k)) it++; return (it); } ft::pair equal_range (const key_type& k) const { return (ft::make_pair(lower_bound(k), upper_bound(k))); } ft::pair equal_range (const key_type& k) { return (ft::make_pair(lower_bound(k), upper_bound(k))); } /* ************************************************************************** */ /* ************************************************************************** */ /* ************************************************************************** */ /* ******************************TREE FUNCTIONS****************************** */ /* ************************************************************************** */ /* ************************************************************************** */ /* ************************************************************************** */ private : void rotateLeft(node *&root, node *&pt) { node *pt_right = pt->right; pt->right = pt_right->left; if (pt->right != NULL) pt->right->parent = pt; pt_right->parent = pt->parent; if (pt->parent == NULL) root = pt_right; else if (pt == pt->parent->left) pt->parent->left = pt_right; else pt->parent->right = pt_right; pt_right->left = pt; pt->parent = pt_right; } void rotateRight(node *&root, node *&pt) { node *pt_left = pt->left; pt->left = pt_left->right; if (pt->left != NULL) pt->left->parent = pt; pt_left->parent = pt->parent; if (pt->parent == NULL) root = pt_left; else if (pt == pt->parent->left) pt->parent->left = pt_left; else pt->parent->right = pt_left; pt_left->right = pt; pt->parent = pt_left; } node* insert_node(node* root, node *pt) { /* If the tree is empty, return a new node */ if (root == NULL) return pt; /* Otherwise, recur down the tree */ if (pt->data < root->data) { root->left = insert_node(root->left, pt); root->left->parent = root; } else if (pt->data > root->data) { root->right = insert_node(root->right, pt); root->right->parent = root; } /* return the (unchanged) node pointer */ return root; } void fixViolation(node *&root, node *&pt) { node *parent_pt = NULL; node *grand_parent_pt = NULL; while ((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) { parent_pt = pt->parent; grand_parent_pt = pt->parent->parent; /* Case : A Parent of pt is left child of Grand-parent of pt */ if (parent_pt == grand_parent_pt->left) { node *uncle_pt = grand_parent_pt->right; /* Case : 1 The uncle of pt is also red Only Recoloring required */ if (uncle_pt != NULL && uncle_pt->color == RED) { grand_parent_pt->color = RED; parent_pt->color = BLACK; uncle_pt->color = BLACK; pt = grand_parent_pt; } else { /* Case : 2 pt is right child of its parent Left-rotation required */ if (pt == parent_pt->right) { rotateLeft(root, parent_pt); pt = parent_pt; parent_pt = pt->parent; } /* Case : 3 pt is left child of its parent Right-rotation required */ rotateRight(root, grand_parent_pt); swapColors(parent_pt, grand_parent_pt); pt = parent_pt; } } /* Case : B Parent of pt is right child of Grand-parent of pt */ else { node *uncle_pt = grand_parent_pt->left; /* Case : 1 The uncle of pt is also red Only Recoloring required */ if ((uncle_pt != NULL) && (uncle_pt->color == RED)) { grand_parent_pt->color = RED; parent_pt->color = BLACK; uncle_pt->color = BLACK; pt = grand_parent_pt; } else { /* Case : 2 | pt is left child of its parent | Right-rotation required */ if (pt == parent_pt->left) { rotateRight(root, parent_pt); pt = parent_pt; parent_pt = pt->parent; } /* Case : 3 pt is right child of its parent Left-rotation required */ rotateLeft(root, grand_parent_pt); swapColors(parent_pt, grand_parent_pt); pt = parent_pt; } } } root->color = BLACK; } /* ************************************************************************** */ /* **********************************DELETE********************************** */ /* ************************************************************************** */ node *uncle(node *x) { if (x->parent == NULL or x->parent->parent == NULL) return NULL; if (x->parent->isOnLeft()) return x->parent->parent->right; else return x->parent->parent->left; } bool isOnLeft(node *x) { return this == x->parent->left; } // returns pointer to sibling node *sibling(node *x) { // sibling null if no parent if (x->parent == NULL) return NULL; if (isOnLeft()) return x->parent->right; return x->parent->left; } // moves node down and moves given node in its place void moveDown(node *nParent, node *x) { if (x->parent != NULL) { if (isOnLeft()) x->parent->left = nParent; else x->parent->right = nParent; } nParent->parent = x->parent; x->parent = nParent; } bool hasRedChild(node *x) { return (x->left != NULL and x->left->color == RED) or (x->right != NULL and x->right->color == RED); } void swapColors(node *x1, node *x2) { bool temp; temp = x1->color; x1->color = x2->color; x2->color = temp; } void swapValues(node *u, node *v) { int temp; temp = u->val; u->val = v->val; v->val = temp; } void fixRedRed(node *x) { // if x is root color it black and return if (x == _root) { x->color = BLACK; return; } // initialize parent, grandparent, uncle node *parent = x->parent, *grandparent = parent->parent, *uncle = x->uncle(); if (parent->color != BLACK) { if (uncle != NULL && uncle->color == RED) { // uncle red, perform recoloring and recurse parent->color = BLACK; uncle->color = BLACK; grandparent->color = RED; fixRedRed(grandparent); } else { // Else perform LR, LL, RL, RR if (parent->isOnLeft()) { if (x->isOnLeft()) { // for left right swapColors(parent, grandparent); } else { leftRotate(parent); swapColors(x, grandparent); } // for left left and left right rightRotate(grandparent); } else { if (x->isOnLeft()) { // for right left rightRotate(parent); swapColors(x, grandparent); } else swapColors(parent, grandparent); // for right right and right left leftRotate(grandparent); } } } } // find node that do not have a left child // in the subtree of the given node node *successor(node *x) { node *temp = x; while (temp->left != NULL) temp = temp->left; return temp; } // find node that replaces a deleted node in BST node *replace_node(node *x) { // when node have 2 children if (x->left != NULL and x->right != NULL) return successor(x->right); // when leaf if (x->left == NULL and x->right == NULL) return NULL; // when single child if (x->left != NULL) return x->left; else return x->right; } // deletes the given node void deleteNode(node *v) { node *u = replace_node(v); // True when u and v are both black bool uvBlack = ((u == NULL or u->color == BLACK) and (v->color == BLACK)); node *parent = v->parent; if (u == NULL) { // u is NULL therefore v is leaf if (v == _root) _root = NULL;// v is root, making root null else { if (uvBlack) { // u and v both black // v is leaf, fix double black at v fixDoubleBlack(v); } else { // u or v is red if (v->sibling() != NULL) // sibling is not null, make it red" v->sibling()->color = RED; } // delete v from the tree if (v->isOnLeft()) parent->left = NULL; else parent->right = NULL; } delete v; return; } if (v->left == NULL or v->right == NULL) { // v has 1 child if (v == _root) { // v is root, assign the value of u to v, and delete u v->val = u->val; v->left = v->right = NULL; delete u; } else { // Detach v from tree and move u up if (v->isOnLeft()) parent->left = u; else parent->right = u; delete v; u->parent = parent; if (uvBlack) fixDoubleBlack(u);// u and v both black, fix double black at u else u->color = BLACK;// u or v red, color u black } return; } // v has 2 children, swap values with successor and recurse swapValues(u, v); deleteNode(u); } //template node *new_node(key_type key, mapped_type val) { node *ret; ret = _node_alloc.allocate(1); _node_alloc.construct(ret, node(key, val)); //ret = _node_alloc::allocate(1); //_node_alloc::construct(ret, node(key, val)); return (ret); } }; //end of map class //---------------------------------- //----------COMPARE CLASS----------- //---------------------------------- template class map::value_compare //man map::value_compare { // in C++98, it is required to inherit binary_function friend class map; protected: Compare comp; value_compare(Compare c) : comp(c) {} // constructed with map's comparison object public: typedef bool result_type; typedef value_type first_argument_type; typedef value_type second_argument_type; bool operator() (const value_type& x, const value_type& y) const { return comp(x.first, y.first); } }; }